

136 Coonbrook Road • P.O. Box 69 Petersburgh, New York 12138

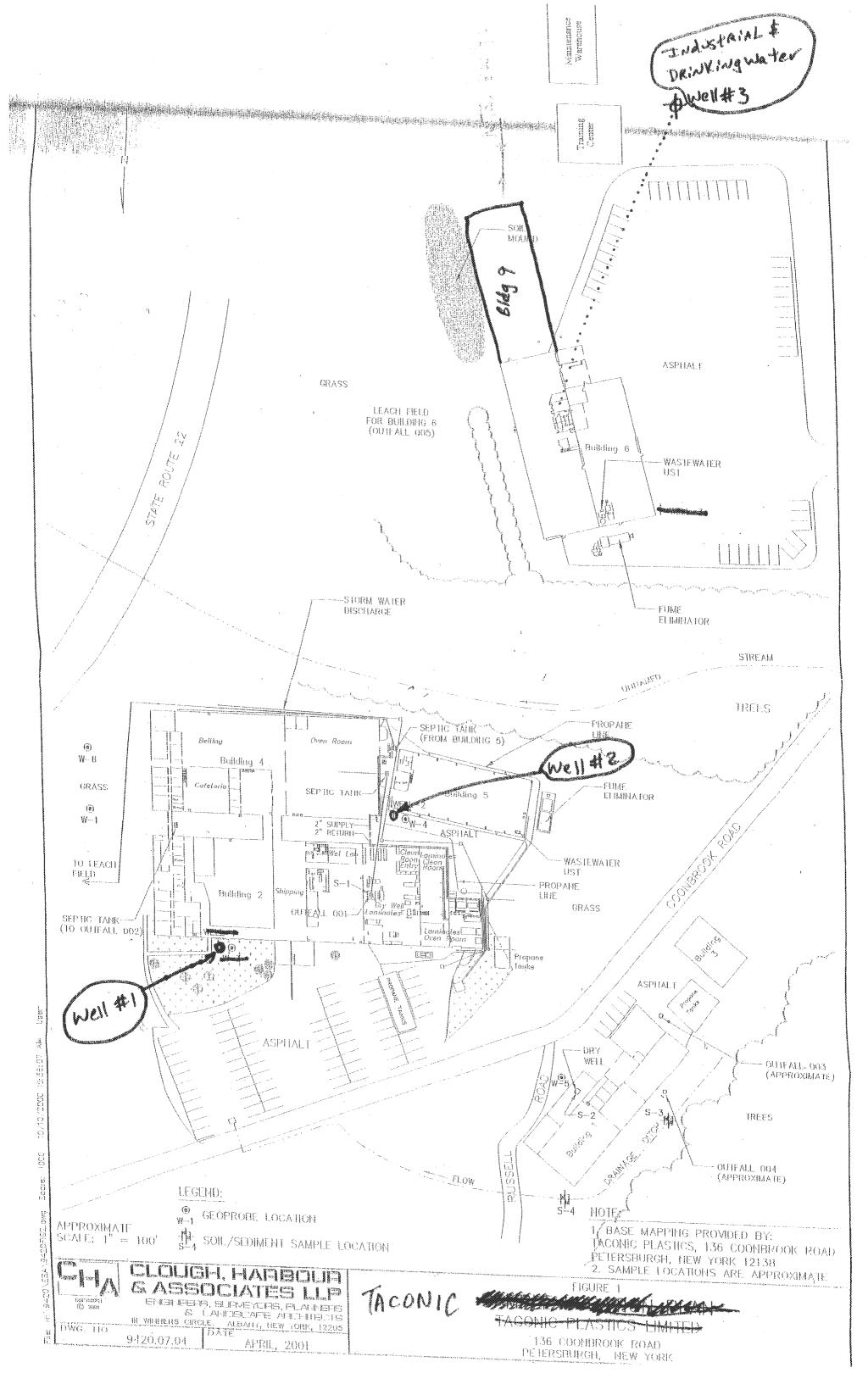
Telephone: 518.658.3202 Fax: 518.658.3204

August 3, 2005

Mr. Frederick Sievers
Regional Water Engineer
New York State Department of Environmental Conservation
Region 4
1150 North Westcott Road
Schenectady, NY 12306-2014

Re: Taconic, Petersburgh, NY

Dear Mr. Sievers:


We have recently undertaken voluntary efforts to evaluate the presence and level of perfluorooctanic acid (PFOA) at or near the Taconic facility. Attached please find copies of the laboratory analytical reports related to the presence of this compound in groundwater at or near the facility.

After you have had a chance to look through the enclosed, would you please contact me at your earliest convenience so that we can arrange a meeting to discuss this information? I can be reached at (518) 658-3202 ext. 288.

Sincerely,

Andrew Kawczak

Environmental Manager

Analytical Report

TACONIC Analysis of PFOA in Water Samples Exygen Report No. L0003924

Testing Laboratory

Exygen Research 3058 Research Drive State College, PA 16801

Requester

Tim Kosto TACONIC 136 Coonbrook Road Petersburgh, New York, 12138 Phone: 518-658-3202

> See 17 ±

1 Introduction

Results are reported for the analysis of perfluorooctanoic acid (PFOA) in wastewater samples received at Exygen from Tim Kosto at TACONIC. The Exygen project number assigned to the samples is L0003924. Table I lists the target analytes quantitated for the samples.

Table I. Target Analytes for Quantitation

<u>Parameter</u>	<u>Acronym</u>	<u>Formula</u>
Perfluorooctanoic acid	PFOA	C ₇ F ₁₅ COOH

2 Sample Receipt

Four samples were received at Exygen in 500 mL clear plastic bottles. A copy of all sample log-in information is presented in Attachment A.

The samples were received on 11/23/04. The samples were shipped on ice via UPS. The samples were stored refrigerated from time of receipt until analysis.

3 Methods - Analytical and Preparatory

3.1 Sample Preparation

Solid phase extraction (SPE) was used to prepare the samples for LC/MS/MS analysis. A forty milliliter portion of each sample was transferred to a C_{18} SPE cartridge. The cartridge was eluted with 5 mL of 100% methanol. This treatment resulted in an eight-fold concentration of the samples prior to analysis. A portion of the extract was transferred to autosampler vials and analyzed using electrospray LC/MS/MS.

3.2 Sample Analysis by LC/MS/MS

In High Pressure Liquid Chromatography (HPLC), an aliquot of extract is injected and passed through a liquid-phase chromatographic column. Based on the affinity of the analyte for the stationary phase in the column relative to the liquid mobile phase, the analyte is retained for a characteristic amount of time. Following HPLC separation, mass spectrometry provides a rapid and accurate means for analyzing a wide range of organic compounds. Molecules are ionized, fragmented, and detected. The ions characteristic of the compounds are observed and quantitated against extracted standards.

An HP1100 system interfaced to a Micromass Quattro system was used to analyze the sample extracts for quantitation. A gradient elution through a Jones Chromatography Genesis C-8 50 x 2.1 mm x 4µm column was used for separation.

The following gradient was performed:

Mobile Phase (A): Mobile Phase (B):	2mM Ammoniui Methanol	m Acetate in Water
<u>Time</u>	<u>%A</u>	<u>%B</u>
0.0	60	40
0.4	60	40
1.0	10	90
7.0	1Q	90
7.5	0	100
9.0	0	100
9.5	60	40
13.5	60	40
14.0	60	40

The following parameters were used for operation of the mass spectrometer:

Parameter	Setting
Ionization Mode	Electrospray
Polarity	Negative
Transitions Monitored	413->369 (PFOA)
Gas Temperature	350°C
Drying Gas (N2)	7.0 L/min

4 Analysis

4.1 Calibration

A 7-point calibration curve was analyzed throughout the analytical sequence for PFOA. The calibration points were prepared at 0, 25, 50, 100, 250, 500, and 1000 ng/L (ppt) for LC/MS/MS analysis. Calibration standards are prepared using the same SPE procedure used for samples. The instrument response versus the concentration was plotted for each point. Using linear regression with 1/x weighting, the slope, y-intercept and coefficient of determination (r^2) were determined. A calibration curve is acceptable if $r^2 \ge 0.985$.

For the results reported here, calibration criteria were met. The calibration curves are included in the raw data in Attachment C.

4.2 Surrogates

Surrogates were not used in this study.

4.3 Laboratory Control Spikes

Laboratory control spikes in the analytical set were prepared by adding a known concentration of the analyte to laboratory water. Laboratory control spikes are used to assess method accuracy. The laboratory control spikes must show recoveries between 70-130% or the data is rejected. For the results reported here, the laboratory control spikes were within the acceptable range.

4.4 Matrix Spikes

A matrix spike was prepared for each sample in the analytical set by adding a known concentration of the target analyte to a separate sample. Matrix spikes are used to assess method accuracy in the matrix. The matrix spikes should show recoveries between 70-130%. For the results reported here the matrix spike for 04-10-03A,B was within the acceptable range. For the other three samples, 04-10-01A,B, 04-10-02A,B and 04-10-04, the amount of PFOA found in the sample greatly exceeded the spiking level and an accurate recovery could not be calculated.

4.5 Sample Related Comments

Each sample was extracted in duplicate and analyzed. Duplicate sample results are reported along with the sample results in Attachment B.

5 Data Summary

Please see Attachment B for a detailed listing of the analytical results. Results are reported in parts per billion (ng/mL) for the analyte, PFOA, on an as-received basis.

6 Data/Sample Retention

Samples are disposed of one month after the report is issued unless otherwise specified. All electronic data is archived on retrievable media and hard copy reports are stored in data folders maintained by Exygen. Hardcopy data is stored for a minimum of five years. The client will be notified 30 days prior to the disposal of hardcopy data.

7 Attachments

- 7.1 Attachment A: Chain of Custody
- 7.2 Attachment B: Analytical Results
- 7.3 Attachment C: Raw Analytical Data

Signatures	
	1 .
Muenkisha	12/21/04
Karen Risha, Principal Investigator	Date
Och M Fland	13/24/19
ပ်ohn M. Flaherty, Vice President	Date

Alditorial Suples For FEA testing of TExTORN CHIC-CH PECA CONSOL WA 211:22 a FC-118 1:100 (Jejo/

Summary of PFOA in Water Samples

Sample ID	Analyte Found ppb (ng/mL) PFOA
04-10-01A,B	117 } 8125#4 (**** 224 **2) 116 } 8125#4 (**** 224 **2)
04-10-01A,B*	116
04-10-02A,B	1527 2 2 2 2 Well (451 Well #1)
04-10-02A,B*	148 5
04-10-03A,B	2.30 7 31/3 # 6 2/4 (4,24, 2011#3)
04-10-03A,B*	2.07 3 34 3 7 7
04-10-04	13700
04-10-04*	14100

^{*}Laboratory Duplicate

January 2005

Analytical Report

TACONIC Analysis of PFOA in Water Samples Exygen Report No. L0004258

Testing Laboratory

Exygen Research 3058 Research Drive State College, PA 16801

Requester

Tim Kosto TACONIC 136 Coonbrook Road Petersburgh, New York, 12138 Phone: 518-658-3202

See page 11 =

3058 Research Drive State College, PA 16801, USA T: 800.281.3219 F: 814.272.1019 exygen.com

1 Introduction

Results are reported for the analysis of perfluorooctanoic acid (PFOA) in water samples received at Exygen from Tim Kosto at TACONIC. The Exygen project number assigned to the samples is L0004258. Table I lists the target analytes quantitated for the samples.

Table I. Target Analytes for Quantitation

<u>Parameter</u>	<u>Acronym</u>	<u>Formula</u>
Perfluorooctanoic acid	PFOA	C ₇ F ₁₅ COOH

2 Sample Receipt

Five samples were received at Exygen in 500 mL clear plastic bottles. A copy of all sample log-in information is presented in Attachment A.

The samples were received on 01/14/05. The samples were shipped on ice via UPS. The samples were stored refrigerated from time of receipt until analysis.

3 Methods - Analytical and Preparatory

3.1 Sample Preparation

Solid phase extraction (SPE) was used to prepare the samples for LC/MS/MS analysis. A forty milliliter portion of each sample was transferred to a C_{18} SPE cartridge. The cartridge was eluted with 5 mL of 100% methanol. This treatment resulted in an eight-fold concentration of the samples prior to analysis. A portion of the extract was transferred to autosampler vials and analyzed using electrospray LC/MS/MS.

3.2 Sample Analysis by LC/MS/MS

In High Pressure Liquid Chromatography (HPLC), an aliquot of extract is injected and passed through a liquid-phase chromatographic column. Based on the affinity of the analyte for the stationary phase in the column relative to the liquid mobile phase, the analyte is retained for a characteristic amount of time. Following HPLC separation, mass spectrometry provides a rapid and accurate means for analyzing a wide range of organic compounds. Molecules are ionized, fragmented, and detected. The ions characteristic of the compounds are observed and quantitated against extracted standards.

An HP1100 system interfaced to a Micromass Quattro system was used to analyze the sample extracts for quantitation. A gradient elution through a Jones Chromatography Genesis C-8 $50 \times 2.1 \text{ mm} \times 4 \mu \text{m}$ column was used for separation:

The following gradient was performed:

Mobile Phase (A): Mobile Phase (B):	2mM Ammonium Methanol	n Acetate in Water
Time 0.0 0.4 1.0 7.0 7.5 9.0 9.5 13.5 14.0	<u>%A</u> 60 60 10 10 0 0 60 60 60	%B 40 40 90 90 100 100 40 40

The following parameters were used for operation of the mass spectrometer:

• • •	THE RESIDENCE OF THE PROPERTY	
	Setting	
Parameter	Electrospray	
Ionization Mode	Negative	
Polarity	413->369 (PFOA)	
Transitions Monitored	350°C	
Gas Temperature		
Drying Gas (N2)	7.0 L/min	

4 Analysis

4.1 Calibration

A 7-point calibration curve was analyzed throughout the analytical sequence for PFOA. The calibration points were prepared at 0, 25, 50, 100, 250, 500, and 1000 ng/L (ppt) for LC/MS/MS analysis. Calibration standards are prepared using the same SPE procedure used for samples. The instrument response versus the concentration was plotted for each point. Using linear regression with 1/x weighting, the slope, y-intercept and coefficient of determination (r^2) were determined. A calibration curve is acceptable if $r^2 \ge 0.985$.

For the results reported here, calibration criteria were met. The calibration curves are included in the raw data in Attachment C.

4.2 Surrogates

Surrogates were not used in this study.

4.3 Laboratory Control Spikes

Laboratory control spikes in the analytical set were prepared by adding a known concentration of the analyte to laboratory water. Laboratory control spikes are used to assess method accuracy. The laboratory control spikes must show recoveries between 70-130% or the data is rejected. For the results reported here, the laboratory control spikes were within the acceptable range.

4.4 Matrix Spikes

A matrix spike was prepared for each sample in the analytical set by adding a known concentration of the target analyte to a separate sample. Matrix spikes are used to assess method accuracy in the matrix. The matrix spikes should show recoveries between 70-130%. For the results reported here the matrix spike for 04-10-03A,B was within the acceptable range. For the other three samples, 04-10-01A,B, 04-10-02A,B and 04-10-04, the amount of PFOA found in the sample greatly exceeded the spiking level and an accurate recovery could not be calculated.

4.5 Sample Related Comments

Each sample was extracted in duplicate and analyzed. Duplicate sample results are reported along with the sample results in Attachment B.

5 Data Summary

Please see Attachment B for a detailed listing of the analytical results. Results are reported in parts per billion (ng/mL) for the analyte, PFOA.

6 Data/Sample Retention

Samples are disposed of one month after the report is issued unless otherwise specified. All electronic data is archived on retrievable media and hard copy reports are stored in data folders maintained by Exygen. Hardcopy data is stored for a minimum of five years. The client will be notified 30 days prior to the disposal of hardcopy data.

7 Attachments

- 7.1 Attachment A: Chain of Custody
- 7.2 Attachment B: Analytical Results
- 7.3 Attachment C: Raw Analytical Data

8	Signatures	
	Migue Di Ma	01/24/05
	Karen Ristja, Principal Investigator	Date
	Olm Flakast	1/34/05
	John M. Flaherty, Vice President	Date

SAMPLE ID	LOCATION	
04-13-01	RPI Dejouized Wedge	N
04-13-02	161 SHEFBUT ROAD	ND
04-11-03	147 Coompoon Ry (Logs)	43
04-13-04	6 RUSSRLL RAID	6.3
04-13-05	Building 1	(6.5le)

4/13/05

FLUDROSILICONE EURLUATIONS FUR GASYO

Dow Corner LS 5-8761 FLUOROSIZICONA

04-13-06

20.18 2-BUTINONA SIGNA LOT 0095 ZTC

04-13-07

20.71 q 65 5-8761 600 000 2224489 20.85 g 4-mily 2-park Bitch 00955HC

BOTH Sompras Pringing At ~ 10:30 A.M.

AFTER 2 hours, both solutions had partially solvated.

stirring with a temps depressor resulted in Schinbury and atheres but at solvated theoresilize on the stock

Summary of PFOA in Water Samples

Sample ID	Analyte Found ppb (ng/mL) PFOA
04-13-01	ND 3 RPI de in 13 d
04-13-01* 04-13-02	ND 3 161 shatestas ND 3 161 shatestas ND & Sadack Massau
04-13-02*	
04-13-03 04-13-03*	4.20 } 147 coors cor 2
04-13-04 04-13-04*	2.28 } 6 evsser Q.d
04-13-05	0.562) 3) A 3 * (v. A pand)
04-13-05*	0.516)

*Laboratory Duplicate

ND = Not Detected. Result is less than 0.0500 ng/mL.

